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We present a combined theoretical and computational analysis of three-dimensional
unsteady finite-Reynolds-number flows in collapsible tubes whose walls perform
prescribed high-frequency oscillations which resemble those typically observed in
experiments with a Starling resistor. Following an analysis of the flow fields, we
investigate the system’s overall energy budget and establish the critical Reynolds
number, Recrit, at which the wall begins to extract energy from the flow. We conjecture
that Recrit corresponds to the Reynolds number beyond which collapsible tubes are
capable of performing sustained self-excited oscillations. Our computations suggest
a simple functional relationship between Recrit and the system parameters, and we
present a scaling argument to explain this observation. Finally, we demonstrate
that, within the framework of the instability mechanism analysed here, self-excited
oscillations of collapsible tubes are much more likely to develop from steady-state
configurations in which the tube is buckled non-axisymmetrically, rather than from
axisymmetric steady states, which is in agreement with experimental observations.

1. Introduction
Fluid–structure interaction plays an important role in many physiological systems

that convey fluid within elastic (collapsible) vessels. For instance, pulse wave
propagation in the arteries is possible only because the arterial walls are elastic;
expiratory flow limitation is known to be caused by the flow-induced collapse of
the pulmonary airways; wheezing during forced expiration and the development
of Korotkoff sounds during sphygmomanometry are believed to be manifestations
of self-excited oscillations of the vessel walls, generated by their interaction with the
fluid flow.

Most experimental studies of flow in collapsible tubes are performed with the
Starling resistor, consisting of a thin-walled elastic tube, mounted on two rigid tubes
(figure 1). Flow is driven through the system either by an applied pressure drop, or
by a volumetric pump located at the far upstream or downstream ends of the rigid
tubes. The elastic tube is contained in a pressure chamber which makes it possible
to control the external pressure, pext, independently of the fluid pressure. As long as
the external pressure is sufficiently small (or negative) relative to the fluid pressure,
the collapsible tube deforms axisymmetrically; in this mode, large changes in fluid
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Figure 1. Sketch of the Starling resistor, a thin-walled elastic tube, mounted on two rigid
tubes and enclosed in a pressure chamber.

pressure are required to change the tube shape. When the external pressure exceeds
a certain critical value, the tube tends to buckle non-axisymmetrically; in this mode
the tube is very flexible so that even small changes in fluid pressure can lead to
large changes in the tube shape, resulting in strong fluid–structure interaction and
complicated pressure-drop/flow relationships see (e.g. Bertram, Raymond & Pedley
1990; Bertram & Castles 1999). Arguably the most intriguing feature of the Starling
resistor is that the system readily develops large-amplitude self-excited oscillations
of great complexity (Bertram et al. 1990). Experiments by Bertram & Tscherry
(2006) show that self-excited oscillations can develop at modest Reynolds numbers
(of the order of a few hundred), and that they develop primarily from steady-state
configurations in which the collapsible tube is in a non-axisymmetrically buckled state
(Bertram, personal communication 2007).

Despite continued interest in the problem since the late 1960s (comprehensively
reviewed in Heil & Jensen 2003), there is still no rational theoretical model that
explains the mechanism(s) responsible for the onset of self-excited oscillations in
three-dimensional finite-length collapsible tubes. In fact, to date it is not even clear
if the self-excited oscillations observed in the experiments arise primarily through a
fluid-mechanical instability (possibly slightly modified by the presence of the elastic
walls), or if the oscillations develop through a genuine interaction between fluid
and solid mechanics. Furthermore, different instability mechanisms may operate in
different regions of parameter space. For instance, some of the very-high-frequency
small-amplitude oscillations observed in some of Bertram’s experiments may simply
represent a passive response of the tube wall to the highly unsteady turbulent flow
within, whereas turbulence cannot be responsible for the oscillations observed in
Bertram & Tscherry’s (2006) experiments at moderate Reynolds numbers.

In early one-dimensional models of flow in collapsible tubes, the wall deformation
was described by a so-called ‘tube law’, an assumed functional relationship between
the tube’s cross-sectional area, A∗, and the local transmural (internal minus external)
pressure, ptm. Writing the tube law as ptm = P(A∗), the wave speed c of small-amplitude
perturbations travelling along the tube is given by

c2 =
A∗

ρf

∂P(A∗)

∂A∗ , (1.1)

where ρf is the fluid density. Within the framework of the one-dimensional theory,
the development of self-excited oscillations has occasionally been linked to the onset
of flow-limitation, which is predicted to occur when the fluid velocity approaches
the wave speed c anywhere along the tube. However, subsequent studies, such as the
experiments by Bertram & Raymond (1991) or the computations by Luo & Pedley
(2000) have cast doubt over a causal link between these two phenomena.
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Jensen & Heil (2003) developed a rational theoretical model that explains the onset
of self-excited oscillations in finite-length parallel-walled channels in which part of one
wall is replaced by a pre-stressed elastic membrane – a two-dimensional equivalent
of the Starling resistor. Focusing on a particular region of parameter space (high
Reynolds number and large wall tension), they identified an instability mechanism
that causes the development of high-frequency self-excited oscillations. Asymptotic
methods were employed to derive explicit predictions for the frequencies and the
growth (or decay) rates of the oscillation as a function of the Reynolds number,
and thus the critical Reynolds number for the onset of self-excited oscillations
was established. The asymptotic predictions were confirmed by direct numerical
simulations which showed that the mechanism responsible for the initial instability
also controls the large-amplitude oscillations that develop subsequently. Briefly, Jensen
& Heil (2003) showed that high-frequency wall oscillations generate an unsteady
inviscid core flow in which fluid that is displaced by the transversely oscillating wall
performs axial sloshing motions. Thin Stokes layers form on the channel walls. A key
ingredient of the instability mechanism is that the oscillatory core flow can create a net
influx of (kinetic) energy into the system. The development of self-excited oscillations
depends crucially on the ratio of this influx of energy to the viscous dissipation in
the Stokes layers.

Motivated by Jensen & Heil’s (2003) study, Heil & Waters (2006) subsequently
investigated how (and whether) the two-dimensional instability mechanism can be
adjusted to explain the experimentally observed instabilities in three-dimensions.
They found that, while the main ingredients of the instability mechanism are
independent of the spatial dimension, there are some important differences between
the two-dimensional and three-dimensional systems. In particular, slight buckling
of a cylindrical tube about its axisymmetric configuration causes only very small
changes in its volume. Therefore, at small amplitudes, the oscillatory wall deformation
induces only very small net axial flows – the dominant oscillatory flows occur in the
tube’s transverse cross-sections. This is an important difference to the behaviour in
the two-dimensional system and suggests that in three-dimensions, Jensen & Heil’s
instability mechanism will operate efficiently only if the tube oscillates about a
non-axisymmetrically buckled mean configuration and/or if the amplitude of the
oscillations reaches a certain critical magnitude. Heil & Waters (2006) assumed that
the oscillatory axial velocities could be neglected and employed a combination of
numerical and asymptotic techniques to study the two-dimensional flows that develop
in the transverse cross-sections of an oscillating elastic tube. Their study identified
the physical mechanisms that control the dynamics of these oscillations and provided
explicit predictions for their period and decay rate. (In their two-dimensional model,
the transverse flows do not interact with the steady through flow and can therefore
not extract any energy from it – the oscillations therefore invariably decay.)

In this paper, we extend the previous analyses to three dimensions and focus on
the transfer of energy between the fluid and the solid, exploiting the fact that in the
fluid–structure interaction problem, oscillations will grow in amplitude if and only if
the wall extracts energy from the flow. Our approach is as follows. We assume that
the wall performs a time-periodic oscillation about a time-mean configuration, and
prescribe the wall displacement field and the period of the oscillation. We aim to
identify regions of parameter space in which a net influx of kinetic energy over the
in- and outflow boundaries provides a sufficient source of energy that the wall can
extract energy from the flow. To guide our exploration of parameter space, we note
that the instantaneous flux of kinetic energy over the far-upstream or far-downstream
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Figure 2. (a) Sketch of the sloshing flows generated by the oscillatory wall motion of
amplitude ε∗ in the two-dimensional collapsible channel analysed by Jensen & Heil (2003).
The sloshing flow has an inviscid core region, with Stokes layers of thickness δ∗ near the walls.
(b) The influx of kinetic energy is maximized if the sloshing flows are suppressed at the far
downstream end of the system. In both cases the mean flow (not shown) is assumed to be
from left to right.

ends of the system is given by

F[kin]∗ =

∫
u∗ · n

(
1
2

ρf (u∗)2
)
dA∗, (1.2)

where u∗ is the velocity field, ρf the fluid density, and n the outer unit normal
on the in- or outflow cross-section, A∗. Assuming that the flow is fully developed
at the in- and outflow cross-sections and that it can be decomposed into a steady
mean component, u∗, and a time-periodic perturbation with zero mean, û∗

, which is
dominated by a single Fourier mode, the net influx of kinetic energy over one period

of the oscillation, F[kin]∗, is given by

F[kin]∗ ≈ 3

∫
u∗ · n

(
1
2

ρf

(
û∗)2)

dA∗, (1.3)

where the overbar denotes the time-average over one period of the oscillation. Hence,
we have a net influx of kinetic energy if the time-averaged square of the velocity

perturbations, (û∗
)2, at the inflow exceeds that at the outflow. Jensen & Heil (2003)

showed that, for pressure-driven flows, this is likely to occur if the length of the
downstream rigid tube exceeds that of its upstream counterpart (figure 2a). The net
influx of kinetic energy is maximized if the fluctuations at the downstream end are
suppressed so that û∗ ≡ 0 (figure 2b). Experimentally, this could be achieved by
controlling the flow rate using a volumetric pump located at the far downstream
end of the system. In that case, the entire volume of fluid that is displaced by the
wall motion contributes to the velocity fluctuations at the far upstream end where
it generates a net influx of kinetic energy, while no kinetic energy fluctuations are
lost through the downstream end. Equation (1.3) also shows that the net influx of
kinetic energy can be increased by two independent mechanisms: (i) by increasing
the magnitude of the sloshing flows, e.g. via an increase in the amplitude of the wall
motion; or (ii) by increasing the mean flow since this increases the advection of kinetic
energy into the domain.

2. The model
We consider the unsteady finite-Reynolds-number flow of a viscous fluid (density

ρf and viscosity µ) through a collapsible tube of undeformed radius a and length L∗,
mounted on two rigid tubes of lengths L∗

up and L∗
down, respectively (figure 1). The total

length of the tube is L∗
total = L∗

up + L∗ + L∗
down. (Throughout this paper, asterisks are
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used to distinguish dimensional quantities from their non-dimensional equivalents.)
We assume that the collapsible wall segment performs prescribed time-periodic non-
axisymmetric oscillations of period T , either about its undeformed axisymmetric shape
or about a non-axisymmetrically buckled configuration. Since the influx of kinetic
energy is maximized when the velocity fluctuations at the outflow are suppressed, we
control the flow rate at the far downstream end of the system by imposing steady
Poiseuille flow with average velocity U at the end of the downstream rigid tube. (For
all the cases considered in this study, the length of the downstream rigid tube was
sufficiently large for the flow to be fully developed well before reaching the outflow
cross-section.) At the inlet, we impose parallel inflow and subject the flow to zero
axial traction. In the absence of any wall deformation, the flow is therefore a steady
Poiseuille flow.

We scale all lengths on the tube radius, a, time on the period of the oscillation,
t∗ = T t, the velocities on the associated unsteady velocity scale, a/T , and all
stresses, tractions and the fluid pressure on the associated viscous scale, so that,
e.g., p∗ =p µ(a/T )/a = p µ/T .

We parameterize the non-dimensional position vector to the undeformed wall shape
by two Lagrangian coordinates ξα (α = 1, 2) as

rw =
(
cos(ξ 2), sin(ξ 2), ξ 1

)T
, (2.1)

written here with respect to a Cartesian coordinate system (x, y, z), where ξ 1 ∈
[0, Ltotal] and ξ 2 ∈ [0, 2π]. The wall motion results in the displacement of material
particles from their original positions, rw(ξ 1, ξ 2), to new positions, Rw(ξ 1, ξ 2, t). We
denote the amplitude of the wall displacement by ε∗ = aε. In the first instance we
decompose the displacement field into a (spatial) mode shape, m(ξ 1, ξ 2), and a time-

dependent amplitude, f (t), by setting Rw = R̃w , where

R̃w(ξ 1, ξ 2, t) = rw(ξ 1, ξ 2) + εf (t) m(ξ 1, ξ 2). (2.2)

When analysing the flow field for a specific wall displacement field, we shall use the
mode shape

m(ξ 1, ξ 2) =

⎛⎜⎝U(ξ 1) cos(Nξ 2) cos(ξ 2) − V(ξ 1) sin(Nξ 2) sin(ξ 2)

U(ξ 1) cos(Nξ 2) sin(ξ 2) + V(ξ 1) sin(Nξ 2) cos(ξ 2)

W(ξ 1) cos(Nξ 2)

⎞⎟⎠ , (2.3)

where U(ξ 1) = V(ξ 1) = W(ξ 1) = 0 for ξ 1 < Lup and ξ 1 > Lup + L. This mode shape
resembles the eigenmode of a cylindrical shell oscillating in its Nth azimuthal mode
(see e.g. Soedel 1993) which is appropriate for small-amplitude oscillations. However,
the wall shapes described by (2.3) become increasingly unrealistic as the amplitude
of the oscillation is increased. This is because at finite-amplitude, the mode shape
(2.3) leads to significant azimuthal stretching of the tube wall, whereas thin-walled
elastic shells tend to deform in a mode that minimizes their extensional deformation.
Therefore we modified the above wall displacement such that the perimeter of the
tube’s cross-sections is kept constant. This was achieved by setting

Rw(ξ 1, ξ 2, t) = R̃z
w(ξ 1, ξ 2, t) ez + R̃⊥

w(ξ 1, ξ 2, t) S(t, ξ 1; ε), (2.4)

where R̃z
w(ξ 1, ξ 2, t) = R̃w(ξ 1, ξ 2, t) · ez and R̃⊥

w(ξ 1, ξ 2, t) = R̃w(ξ 1, ξ 2, t)−R̃z
w(ξ 1, ξ 2, t) ez.

The scaling factor S(t, ξ 1; ε) = 1+O(ε2) in (2.4) was chosen such that the tube’s cross-
sections deform without any net azimuthal stretching; see Appendix A for details.
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We assume that the wall displacement field contains a steady and a time-periodic
unsteady component so that

f (t) = E + sin(Ωt), (2.5)

where E indicates the magnitude of the tube’s mean deflection, relative to the
amplitude of its oscillations about this mean configuration. If E =0, the wall performs
oscillations about its undeformed axisymmetric shape. The parameter Ω is introduced
to facilitate the transfer of our results to the fully coupled fluid–structure interaction
problem, where it is important to distinguish between the time scale T used in
the non-dimensionalization of the equations, and the actual (and a priori unknown)
period T∗ = T T of the coupled oscillations. We define

Ω = 2π
T

T∗ = 2π
1

T , (2.6)

and note that for the prescribed wall motions considered in this paper, Ω ≡ 2π.
The flow is governed by the non-dimensional Navier–Stokes equations

α2

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇2u, ∇ · u = 0, (2.7)

where the Womersley number

α2 =
ρf a2

µT
, (2.8)

represents the ratio of unsteady fluid inertia to the viscous forces. The flow is subject
to the no-slip conditions

u =
∂ Rw

∂t
on the wall. (2.9)

The assumption of parallel, axially traction-free inflow implies

p = 0, u · er = 0, u · eθ = 0 at z = 0, (2.10)

where er , eθ and ez are the unit coordinate vectors in a cylindrical polar coordinate
system (r, θ, z). At the outflow we prescribe a Poiseuille profile,

u =
2

St

(
1 − r2

)
ez at z = Ltotal, (2.11)

where the Strouhal number

St =
a

UT
, (2.12)

represents the ratio of the time scales for the mean axial flow to the period of the
wall oscillation. We note that the ratio of Womersley and Strouhal numbers is the
Reynolds number associated with the steady flow

α2

St
=

ρf aU

µ
= Re. (2.13)

The problem is thus governed by three main dimensionless parameters: the Womersley
number, α2, the Strouhal number, St , and the amplitude of the wall displacement
field ε. We note that the inverse Strouhal number provides a measure of the mean
flow through the tube.
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When analysing the system’s energy budget we will frequently refer to the energy
equation which, in terms of the non-dimensional variables, is given by

α2 d

dt

∫
V

(
1
2

u2
)

dV︸ ︷︷ ︸
dΠkin/dt

− α2

∫
inflow

ez · u
(

1
2

u2
)

dA︸ ︷︷ ︸
F[kin]

in

+ α2

∫
outflow

ez · u
(

1
2

u2
)

dA︸ ︷︷ ︸
F[kin]

out

=

∫
inflow

t · u dA︸ ︷︷ ︸
Pin

+

∫
outflow

t · u dA︸ ︷︷ ︸
Pout

+

∫
wall

t · u dA︸ ︷︷ ︸
Pwall

−
∫

V

Φ dV︸ ︷︷ ︸
D

, (2.14)

where t is the traction that acts on the fluid at the relevant surfaces. The various
integrals represent the rate of change of kinetic energy, the flux of kinetic energy
over the inflow and outflow cross-sections, the rate-of-work done on the fluid by the
applied traction at the inflow, outflow, and by the wall, respectively, and the viscous
dissipation, expressed as the integral of Φ = 2E : E, where E = (1/2)(∇u +(∇u)T ) is the
rate-of-strain tensor.

3. Scaling and asymptotic analysis
Before discussing the numerical solution of the problem, we first employ asymptotic

methods to analyse the flow field in a particular parameter regime, exploiting the fact
that, for high-frequency wall oscillations, the Womersley and Strouhal numbers are
likely to be large. In addition, we initially restrict attention to small wall deflections
so that ε � 1.

3.1. Scaling

In the absence of any wall deformation, the flow is steady Poiseuille flow. We therefore
decompose the velocity field into a Poiseuille profile and add steady and unsteady
(with zero mean) perturbations that are generated by the wall motion and mean
deformation. Scaling the former on the mean velocity, U , and the latter two on the
wall velocity, ε a/T , respectively, yields

u =
1

St
U + ε(u + û), (3.1)

where

U = 2(1 − r2)ez = W (r) ez. (3.2)

Throughout this paper we use overbars to denote time-mean quantities and hats to
denote unsteady quantities with zero mean. Similarly, we separate the pressure into
a Poiseuille contribution, P , which we scale on the viscous pressure scale, µU/a,
and add steady and unsteady (with zero mean) perturbations. Since the pressure
perturbations are induced by the high-frequency wall motion, we expect them to
be dominated by inertial effects and scale them on ε ρf a2/T 2. Thus, we write the
pressure as

p =
1

St
P + ε α2(p + p̂), (3.3)

where P = − 8z. We substitute (3.1) and (3.3) into (2.7) and decompose the equations
into their unsteady (with zero mean) components,

∂ û
∂t

+

(
1

St
U + εu

)
· ∇û + û · ∇

(
1

St
U + εu

)
+ ε ̂û · ∇û = −∇p̂ +

1

α2
∇2û, (3.4)
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∇ · û = 0, (3.5)

and their time-average over one period of the oscillation,

εu · ∇u + εû · ∇û +
1

St
(u · ∇U + U · ∇u) = −∇p +

1

α2
∇2u, ∇ · u = 0. (3.6)

In these expressions, the overbar and hat operators extract the time-average and
time-periodic (with zero mean) components from their arguments.

From (2.9), the boundary condition at the tube wall is

1

St
U + ε(û + u) =

∂ Rw

∂t
, (3.7)

and from (2.10) and (2.11) we have

p = p̂ = 0, u · er = û · er = 0, u · eθ = û · eθ = 0 at z = 0, (3.8)

u = û = 0 at z = Ltotal. (3.9)

3.2. The parameter regime for the asymptotic analysis

We now analyse the above equations in a particular parameter regime. We assume
that the wall deflection is small, corresponding to ε � 1 and E =O(1). Furthermore,
we assume that the period of the wall oscillation is much shorter than the typical time
scale for the mean flow so that St−1 � 1. This suggests an expansion of all quantities
in powers of ε and St−1, i.e.

û = û0 + O(ε, St−1), p̂ = p̂0 + O(ε, St−1), (3.10)

where (û0, p̂0) are the leading-order contributions to (û, p̂); similar expansions are
employed for the remaining dependent variables. High-frequency wall oscillations are
characterized by large Womersley numbers, α2 	 1, and we assume that

ε,
1

St
� 1

α
� 1. (3.11)

This corresponds to a regime in which the thickness of the Stokes layers that develop
on the oscillating tube walls is much larger than the wall deflection. The relative size
of the terms in the constraint (3.11) determines the Reynolds number of the mean
flow. Small-Reynolds-number flows are characterized by 1/St � 1/α2 � 1 whereas
large Reynolds numbers require 1/α2 � 1/St � 1.

Inserting the expansions (3.10) into (3.4), (3.5), we find that the leading-order
unsteady flow (û0, p̂0) is governed by

∂ û0

∂t
= −∇p̂0 +

1

α2
∇2û0, ∇ · û0 = 0, (3.12)

subject to

û0|r=1 = Ω(cos(Nθ)U(z) er +sin(Nθ)V(z) eθ +cos(Nθ)W(z) ez)e
iΩt at r = 1, (3.13)

where the real part is understood, and the same boundary conditions (3.8) and (3.9)
that we imposed on û and p̂.

Our assumption that 1/α � 1 implies that in the core region, away from the tube
walls, the viscous terms in (3.12) can be neglected so that the flow is governed by the
inviscid equations

∂ û0/∂t = −∇p̂0. (3.14)
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Since inviscid flows cannot satisfy the tangential components of the no-slip condition
(3.13), we expect the development of Stokes (boundary) layers of thickness δ ∝ α−1

on the tube walls. Within these layers the viscous terms have a size of O(1), justifying
their retention in (3.12).

We are now in a position to estimate the size of u and p. Referring to (3.6), we
see that the contributions to u and p arise from the nonlinear inertia terms, and the
deformation of the wall shape (through the boundary conditions). The leading-order
correction to the steady flow, (u0, p0), is governed by

−∇p0 +
1

α2
∇2u0 = 0, ∇ · u0 = 0 (3.15)

subject to u0|r=1 = 0, and the same boundary conditions (3.8) and (3.9) that we
imposed on u and p. A consistent solution is u0 = 0, p0 = 0, indicating that the wall
motion only induces small changes (O(ε2, ε/St)) to the steady flow.

3.3. Analysis of the leading-order unsteady perturbation

To solve the leading-order unsteady flow equations, (3.12), subject to (3.13), we
consider the Fourier expansion of U(z),

U(z) =

∞∑
m=0

(
U [c]

m cos(λmz) + U [s]
m sin(λmz)

)
, (3.16)

where λm = mπ/Ltotal, with similar expansions for V and W. The displacement of the
tube wall is zero at z = 0 and z = Ltotal and thus we must have U [c]

m = V [c]
m = W [c]

m = 0.
We seek asymptotic solutions for the flow quantities. Following Heil & Waters

(2006), we expand the dependent variables in powers of α−1 as follows:

û0 =

(
û00 +

1

α
û01 + · · ·

)
eiΩt , p̂0 =

(
p̂00 +

1

α
p̂01 + · · ·

)
eiΩt , (3.17a, b)

where the real part is understood here and in the analysis that follows. Since we
expect the development of a Stokes (boundary) layer of thickness δ = O(α−1) near
the wall, we introduce the boundary-layer coordinate n= α(1 − r), and expand the
variables in the boundary layer as

û0 =

(
Ûw +

1

α
Û00 +

1

α2
Û01 + · · ·

)
eiΩt , (3.18)

v̂0 =

(
V̂00 +

1

α
V̂01 +

1

α2
V̂02 + · · ·

)
eiΩt , (3.19)

ŵ0 =

(
Ŵ00 +

1

α
Ŵ01 +

1

α2
Ŵ02 + · · ·

)
eiΩt , (3.20)

p̂0 =

(
P̂00 +

1

α
P̂01 +

1

α2
P̂02 + · · ·

)
eiΩt , (3.21)

where

Ûw = Ω cos(Nθ) U(z). (3.22)

The core flow solutions are matched to those in the boundary layer via Van Dyke’s
matching rule (Van Dyke 1964).
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3.3.1. The leading-order in α−1 problem

Substitution of (3.17a, b) into (3.12) shows that the leading-order problem for
(û00, p̂00) is

iΩ û00 = −∇p̂00, ∇ · û00 = 0. (3.23)

These equations must be solved subject to the matching condition whose leading-order

contribution requires that û00 = Ûw at r =1. Applying ∇ · to (3.23) gives ∇2p̂00 = 0
which is then solved subject to ∂p̂00/∂r = − iΩ2U(z) cos(Nθ) at r =1. We consider a
separable solution for p̂00 of the form

p̂00 = iΩ cos(Nθ)

∞∑
m=1

AmIN (λmr) sin(λmz), (3.24)

where IN is the modified Bessel function of order N . From the boundary conditions
at r = 1 we have Am = − ΩU [s]

m /(λmI ′
N (λm)). The core velocities are then determined

using (3.23), so that

û00 = − cos(Nθ)

∞∑
m=1

AmλmI ′
N (λmr) sin(λmz), etc. (3.25)

As expected, the velocity field does not satisfy the no-slip condition that requires
v̂00 = ŵ00 = 0 at r = 1, and it is necessary to consider flow in the Stokes layer. The
leading-order equations that govern this flow are

∂P̂00

∂n
= 0, iΩV̂00 = −∂P̂00

∂θ
+

∂2V̂00

∂n2
, iΩŴ00 = −∂P̂00

∂z
+

∂2Ŵ00

∂n2
, (3.26)

−∂Û00

∂n
+ Ûw +

∂V̂00

∂θ
+

∂Ŵ00

∂z
= 0, (3.27)

which must be solved subject to the no-slip boundary conditions Û00 = 0, V̂00 =

V̂w =Ω sin(Nθ)V and Ŵ00 = Ŵw = Ω cos(Nθ)W at n= 0. The matching conditions as

n → ∞ are limn→∞ V̂00 = v̂00|1, with similar expressions for Ŵ00 and P̂00. The solution
is

Û00 = − cos(Nθ)

∞∑
m=1

λmI ′
N (λm)(Bm sin(λmz) + Cm cos(λmz))(1 − F(n))

+ Am(λmI ′
N (λm) − (N2 + λ2

m)IN (λm))n sin(λmz), (3.28)

V̂00 = sin(Nθ)

∞∑
m=1

(ΩV [s]
m F(n) + AmNIN (λm)(1 − F(n))) sin(λmz), (3.29)

Ŵ00 = cos(Nθ)

∞∑
m=1

ΩW [s]
m F(n) sin(λmz) − AmλmIN (λm)(1 − F(n)) cos(λmz), (3.30)

P̂00 = iΩ cos(Nθ)

∞∑
m=1

AmIN (λm) sin(λmz), (3.31)

where F(n) = exp(−(1 + i)
√

Ω/2n) and

Bm = − (1 − i)√
2ΩλmI ′

N (λm)

(
NΩV [s]

m − Am

(
λ2

m + N2
)
IN (λm)

)
, Cm = −

√
Ω(1 − i)√
2I ′

N (λm)
W [s]

m .

(3.32)
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3.3.2. The first-order in α−1 problem

The governing equations for û01, p̂01 are

iΩ û01 = −∇p̂01, ∇ · û01 = 0, (3.33a, b)

which, from the matching condition must be solved subject to

û01|1 = −
∞∑

m=1

λmI ′
N (λm) (Bm sin(λmz) + Cm cos(λmz)) cos(Nθ). (3.34)

The solution is

p̂01 = iΩ cos(Nθ)

∞∑
m=1

(Bm sin(λmz) + Cm cos(λmz)) IN (λmr), (3.35)

with the core velocities determined using (3.33a), so that

û01 = − cos(Nθ)

∞∑
m=1

λm(Bm sin(λmz) + Cm cos(λmz))I ′
N (λmr), etc. (3.36)

Again, these solutions do not satisfy the no-slip condition which requires v̂01 = ŵ01 = 0
at r = 1. Thus it is again necessary to consider flow in the Stokes layer. The equations
which govern this flow are

iΩV̂01 = −∂P̂01

∂θ
− n

∂P̂00

∂θ
+

∂2V̂01

∂n2
− ∂V̂00

∂n
, (3.37)

∂P̂01

∂n
= iΩÛw, (3.38)

iΩŴ01 = −∂P̂01

∂z
+

∂2Ŵ01

∂n2
− ∂Ŵ00

∂n
, (3.39)

−∂Û01

∂n
+ nÛw + Û00 + n

∂V̂00

∂θ
+

∂V̂01

∂θ
+

∂Ŵ01

∂z
= 0, (3.40)

which must satisfy the no-slip condition V̂01 = Ŵ01 = 0 at n= 0 and the matching

conditions limn→∞ V̂01 = − n(∂v̂00/∂r)|1 + v̂01|1, with similar expressions for Ŵ01 and

P̂01.
The solution is

V̂01 = sin(Nθ)

∞∑
m=1

NIN (λm)(Bm sin(λmz) + Cm cos(λmz))(1 − F(n)) + n sin(λmz)

×
(
AmN(IN (λmz) − λmI ′

N (λm)) + 1
2

(
ΩV [s]

m − AmNIN (λm)
)
F(n)

)
, (3.41)

Ŵ01 = cos(Nθ)

∞∑
m=1

λmIN (λm)(−Bm cos(λmz) + Cm sin(λmz))(1 − F(n)))

+ nλmAm

(
λmI ′

N (λm) +
IN (λm)

2
F(n)

)
cos(λmz) +

nΩW [s]
m

2
F(n) sin(λmz), (3.42)

P̂01 = iΩ cos(Nθ)

∞∑
m=1

IN (λm)(Bm sin(λmz) + Cm cos(λmz))

− nAmλmI ′
N (λm) sin(λmz). (3.43)
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The radial velocity component, Û01, can be obtained from (3.40), but is not required
for the first two terms of the expansion (3.17a).

3.3.3. The composite solution

To facilitate direct comparison with the numerical solution, we construct composite
expansions that are valid throughout the entire domain. Using standard procedures
(see e.g. Hinch 1991) the expansions for velocity and pressure given in (3.24), (3.25),
(3.28), (3.29), (3.30), (3.31), (3.35), (3.36), (3.41), (3.42) and (3.43) can be combined to
the composite approximations

p̂0 = iΩ cos(Nθ)eiΩt

∞∑
m=1

×
(

Am sin(λmz) +
1

α
(Bm sin(λmz) + Cm cos(λmz))

)
IN (λmr), (3.44)

û0 = − cos(Nθ)eiΩt

∞∑
m=1

AmλmI ′
N (λmr) sin(λmz)

+
λm

α
(Bm sin(λmz) + Cm cos(λmz))(I ′

N (λmr) − I ′
N (λm)G(r)), (3.45)

v̂0 = N sin(Nθ)eiΩt

∞∑
m=1

(AmI(r) +
ΩV [s]

m

N
H(r)) sin(λmz)

+
1

α
(Bm sin(λmz) + Cm cos(λmz))

(
IN (λmr)

r
− IN (λm)G(r)

)
, (3.46)

ŵ0 = − cos(Nθ)eiΩt

∞∑
m=1

(Amλm(IN (λmr) − IN (λm)H(r)) − ΩW [s]
m H(r)) sin(λmz)

+
λm

α
(Bm cos(λmz) − Cm sin(λmz))(IN (λmr) − IN (λm)G(r)), (3.47)

where G(r) = F(α(1 − r)), H(r) = G(r)(1 + (1 − r)/2) and I(r) = IN (λmr)/r −
IN (λm)H(r). Plots of these velocity and pressure fields will be shown in § 4.1.

4. Numerical simulations
For finite-amplitude wall oscillations, the governing equations must be solved

numerically. We performed direct numerical simulations using Heil & Hazel’s
(2006) object-oriented multi-physics finite-element library oomph-lib. In experiments,
collapsible tubes tend to buckle in a two-lobed mode, and therefore we restricted
the computations to wall motions with an azimuthal wavenumber of N = 2 and
discretized only a quarter of the domain, x, y � 0. Symmetry conditions were applied
in the planes x =0 and y = 0. The arbitrary Lagrangian–Eulerian form of the Navier–
Stokes equations was discretized with hexahedral Taylor–Hood (Q2Q1) elements on
a body-fitted mesh in which the node-update in response to the wall deformation
was performed by oomph-lib’s MacroElement representation of the domain. The
mesh was carefully designed to achieve a higher element density near the tube
walls where we expect the development of thin Stokes layers. The time-integration
was performed with a fourth-order BDF scheme with constant time step, using the
asymptotic solution derived in § 3.2 as the initial condition. The time-integration
covered at least five periods of the oscillation to ensure that the system had settled



How rapidly oscillating collapsible tubes extract energy from a mean flow 211

into a time-periodic state. The large system of nonlinear algebraic equations to be
solved at every time step of the implicit time-integration procedure was solved by
oomph-lib’s Newton solver. BiCGStab, preconditioned by Elman, Silvester & Wathen
(2005) least-squares-commutator Navier–Stokes preconditioner, was used to solve the
linear systems arising in the course of the Newton iteration. The standard spatial
resolution involved approximately 52 600 degrees of freedom and time-stepping was
performed with 160 time steps per period of the oscillation. Selected runs were
repeated with higher spatial and temporal resolutions to confirm the mesh- and
time-step-independence of the results; see Appendix B.

To perform the numerical simulations, we imposed the radial displacement field

U(ξ 1) =

⎧⎪⎪⎨⎪⎪⎩
0 for ξ 1 < Lup,

1

2

(
1 − cos

(
2π(ξ 1 − Lup)

L

))
for Lup < ξ 1 < Lup + L,

0 for ξ 1 > L + Lup,

(4.1)

for which the Fourier coefficients in (3.16) are given by

U [s]
m =

4L2
total

πm(m2L2 − 4L2
total)

(
cos(λm(Lup + L) − cos(λmLup)

)
. (4.2)

We used the same mode shape for the azimuthal displacement field by setting
V(ξ 1) = � U(ξ 1), where � is the amplitude ratio of the azimuthal and radial
wall displacements. In most computations (apart from those presented in § 5.4),
we suppressed the axial wall displacements by setting W(ξ 1) = 0. All simulations
were performed with � = − 1/2. With this choice, the deformation of the tube’s
cross-sections resembles that of thin-walled elastic rings oscillating in vacuo. The tube
lengths were set to be Lup = 1 and L =Ldown = 5.

4.1. Small-amplitude oscillations

Figure 3 illustrates the three-dimensional flow in the oscillating tube at four equally
spaced instants during one period of the oscillation, for a small-amplitude wall
motion (ε = 10−3) with a ratio of mean-to-oscillatory deflection of E =1, a mean
flow of St−1 = 10−3, and a Womersley number of α2 = 50. In each case, the upper
figure shows the axial velocity profiles in the tube’s cross-sections while the lower
figure shows the profiles of the axial velocity perturbation, obtained by subtracting
the Poiseuille flow profile (3.2) from the actual axial velocity.

At the end of the downstream rigid tube, the velocity profile is given by
the (prescribed) Poiseuille profile and the axial velocity perturbation is therefore
identically equal to zero. In the collapsible section, the wall motion induces noticeable
perturbations to the mean Poiseuille flow, but the perturbations decay very rapidly in
the upstream and downstream rigid tubes. The plots of the axial velocity perturbation
confirm the two-layer structure predicted by the asymptotic analysis. The flow has an
(inviscid) core region in which the velocities vary over O(1) length scales; this region
is surrounded by a thin Stokes layer of thickness O(1/α) near the wall. Furthermore,
although the axial velocity perturbations can be of considerable size, their cross-
sectional average is small as the positive and negative perturbations nearly cancel
each other out, as predicted by (3.47). As a result, the wall motion generates only very
small axial fluxes and the axial velocity perturbations at the inflow are negligible.

Figure 4 shows a more detailed comparison between the asymptotic (figure 4a)
and numerical (figure 4b) results at t = 0.05. The plots of the transverse flows
(instantaneous streamlines and pressure contours in the cross-section z = 3, shown
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(a)(i)
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(b)(i)
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Figure 3. Profiles of the axial velocity, w, (i) and the axial velocity perturbation, w − St−1W ,
(ii) at (a) t = 0.05, (b) t = 0.3, (c) t = 0.55, (d) t = 0.8 for ε = 10−3, St−1 = 10−3, E = 1 and
α2 = 50.

in (i)) demonstrate that the structure of these flows is identical to those analysed
in Heil & Waters’s (2006) study of two-dimensional flows in oscillating elastic
rings. The transverse flows have an (inviscid) core region in which the velocity
field resembles an unsteady stagnation point flow, surrounded by thin Stokes layers
near the wall. The plots in (ii) demonstrate excellent agreement between the numerical
and asymptotic predictions for the axial velocity profiles. Finally, the plots in (iii)
show the three-dimensional pressure distribution p(x, y, z), plotted as a function of
the axial coordinate, z. The envelopes of these pressure plots indicate the maximum
and minimum pressures in a given cross-section and therefore show that the pressure
distribution in the rigid upstream and downstream tubes is dominated by the axial
pressure gradient induced by the mean Poiseuille flow. Conversely, the pressure
distribution in the collapsible segment is dominated by the pressure variations
associated with the transverse flows. For instance, at z = 3, the pressure within the
cross-section varies between pmin = − 0.259 and pmax = 0.212, consistent with the
range of pressures shown in the contour plots in (i).

An examination of the various terms in the energy equation (2.14), shown in
figure 5, demonstrates that the system’s energy budget is dominated by a balance
between the (reversible) instantaneous rate-of-change of kinetic energy, dΠkin/dt , and
the rate-of-work done by the wall, Pwall. Viscous dissipation continuously extracts
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Figure 4. Comparison between (a) asymptotic and (b) numerical solutions for the flow field
at t =0.05 for ε = 10−3, St−1 = 10−3, E = 1 and α2 = 50. (i) Pressure contours and instan-
taneous streamlines in the cross-section z =3. (ii) the axial velocity profile in the same
cross-section. (iii) the three-dimensional pressure distribution p(x, y, z) plotted as a function
of the axial coordinate z.

energy from the system, while the net influx of kinetic energy and the rate-of-work
done by the traction acting on the fluid at the in- and outflow cross-sections are very
small. The wall therefore tends to extract energy from (or input energy into) the flow
when its motion decelerates (or accelerates) the fluid. However, on average, the wall
performs work on the fluid, as shown in figure 6 where we have plotted the total
work done by the wall on the fluid,

Wwall(t) =

∫ t

0

Pwall(τ ) dτ, (4.3)

as a function of time.
This indicates that the net axial sloshing flows generated by the wall motion are

too small to allow Jensen & Heil’s instability mechanism to generate a sufficiently
large influx of kinetic energy to overcome the viscous dissipation. In a fluid–structure
interaction problem we would therefore expect the wall motion to decay.
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Figure 6. Evolution of the total work done by the wall on the fluid, Wwall(t), for the same
parameters as in figures 3 and 5.

4.2. Large-amplitude oscillations

The introductory discussion in § 1 suggested that the instability mechanism proposed
by Jensen & Heil (2003) should operate more efficiently for larger mean flows and/or
for finite-amplitude wall oscillations. Therefore, we will now consider the system’s
behaviour for the same parameter values as in the previous section, but for a larger
mean flow (St−1 = 0.5) and a wall motion in which the wall performs periodic
oscillations of amplitude ε = 0.1 about a buckled mean configuration (E = 1).

Figure 7 shows the axial velocity profiles (the full profiles and the profiles of the axial
velocity perturbation) in various cross-sections, while figure 8 shows the corresponding
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(a)(i)
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Figure 7. Profiles of the axial velocity, w, (i), the axial velocity perturbations, w − St−1W ,
(ii) at (a) t =0.05, (b) t = 0.3, (c) t =0.55, (d) t = 0.8 for ε = 0.1, St−1 = 0.5, E = 1 and α2 = 50.

pressure distribution along the tube, at the same phases of the oscillation as in figure
3. As before, the axial velocity perturbation vanishes at the outflow, and the velocity
perturbations generated within the collapsible segment decay very rapidly as the
flow enters the downstream rigid tube. However, the large-amplitude wall motion
now induces significant changes in the tube volume which generates large net axial
sloshing flows in the upstream rigid tube. While these sloshing flows are not captured
by the small-amplitude asymptotic analysis presented in §3, the character of the
velocity perturbation is still consistent with the flow structures predicted there: an
inviscid core region with thin Stokes layers near the boundary. Upon entering the
upstream rigid section, the axial velocity perturbation rapidly approaches the classical
Womersley profile with its characteristic flat velocity profile in the core region.

The (high-frequency) sloshing flows also have a major effect on the pressure
distribution along the tube (figure 8). The inflow boundary conditions (2.10) impose
a zero pressure at z = 0. Since the core flow is dominated by a balance between
unsteady inertia and the axial pressure gradient, ∂u/∂t ≈ − ∇p, see (3.14), the
high-frequency sloshing motion of the fluid in the upstream rigid tube generates
a large, predominantly axial, pressure gradient. The magnitude of the sloshing flow
(and hence that of the induced axial pressure gradient) diminishes as we proceed
downstream along the collapsible segment, within which the transverse flows can
build up significant transverse pressure gradients. There are no (net) sloshing flows
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Figure 8. Pressure distribution along the tube at (a) t = 0.05, (b) t = 0.3, (c) t = 0.55,
(d) t =0.8. Parameter values as in figure 7.

in the downstream rigid tube, therefore the pressure distribution in this part of the
system is dominated by the relatively small axial pressure gradient induced by the
steady mean flow.

Figure 9 illustrates how the changes to the flow field affect the system’s energy
budget. For large-amplitude oscillations, the dominant terms in the energy equation
are the rate-of-change of the kinetic energy, dΠkin/dt , and Pout, the rate-of-work done
by the traction that acts on the fluid at the outflow. The latter arises through the
product of the large pressure fluctuations at the outflow (figure 8), and the prescribed
Poiseuille velocity profile. Pout represents the rate-of-work that a volumetric pump at
the downstream end would have to provide in order to maintain a constant flow rate
during the oscillations.

The sloshing flows generated in the upstream rigid tube now create a significant
influx of kinetic energy. However, the influx of energy is still less than the viscous
dissipation and, on average, the wall still performs work on the fluid.

A further increase in the influx of kinetic energy is therefore required to allow
Jensen & Heil’s instability mechanism to operate efficiently. Figure 10 shows the
effect of an increase in the mean flow via an increase in the inverse Strouhal number
St−1. As the mean flow is increased, the wall performs less and less work on the fluid
and for a sufficiently large value of St−1 the wall finally begins to extract energy from
the flow. This suggests that in a fluid–structure interaction problem, the amplitude of
the wall motion would increase, allowing the development of sustained self-excited
oscillations of finite amplitude.
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Figure 10. Evolution of the total work done by the wall on the fluid, Wwall(t), for α2 = 50 and
a range of inverse Strouhal numbers. As the mean flow increases, the wall begins to extract
energy from the flow. Other parameters as in figure 7.

5. Analysis of the energy budget
5.1. The dependence of the rate-of-work done by the wall on St−1 and α2

To assess how the work done by the wall on the fluid varies with the mean flow,
figure 11 shows a plot of the total work done by the wall over one period of the
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oscillation,

Pwall =

∫ 1

0

Pwall(t) dt, (5.1)

as a function of the inverse Strouhal number. The figure shows that Pwall decreases
approximately linearly with St−1. For α2 = 50 (the case considered in figure 10), Pwall

changes sign at St−1 = St−1
crit ≈ 2.41, implying that at this flow rate, the system performs

energetically neutral oscillations without any net energy transfer between the fluid
and the solid.

At larger Womersley numbers, the slope of the Pwall(St−1) curves increases and
the flow rate at which the wall begins to extract energy from the flow is reduced.
This is analysed in more detail in figure 12 where we plot St−1

crit as a function of the
Womersley number, α2, on a log–log scale. This plot may be interpreted as follows.
Given the fluid properties, the tube diameter, and the frequency of the oscillation,
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i.e. given α2 = ρf a2/(µT ), what is the minimum mean velocity U , expressed in terms
of the inverse Strouhal number, St−1 = UT/a, required for the wall to extract energy
from the flow?

The slope of the St−1
crit(α

2) curve suggests that

St−1
crit ∼ 1

α
(5.2)

or, in dimensional terms

Ucrit ∼
√

µ

ρf T
=

√
ν

T
, (5.3)

which corresponds to a critical Reynolds number of

Recrit =
aUcrit

ν
∼ α. (5.4)

Thus, within the parameter regime considered here, lower-frequency oscillations
require smaller mean flows in order for the wall to extract energy from the flow.

5.2. A scaling argument to explain the dependence of St−1
crit on α2

We shall now present simple scaling arguments to explain the relation (5.2) between
the inverse Strouhal number St−1

crit at which the oscillating tube wall begins to extract
energy from the flow, and the Womersley number, α2.

For this purpose, we note that for the boundary conditions chosen in this study,
the time-averaged energy equation reduces to

Pwall = D − F[kin]
in + F[kin]

out − Pout. (5.5)

The remaining terms in the energy equation (2.14) vanish: Pin ≡ 0 because of the
zero axial traction at the inflow; the time-average of the rate-of-change of kinetic
energy vanishes because the system performs time-periodic oscillations. Furthermore,
we recall that the flow in a collapsible tube that performs high-frequency oscillations
of amplitude ε about a buckled mean configuration can be approximated by

u =
1

St
W ez + εû0 + · · · , p = − 1

St
8z + εα2p̂0 + · · · , (5.6)

where the time-periodic perturbations û0 and p̂0 have zero mean and the unsteady
oscillatory flow û0 has an inviscid core with thin Stokes layers of thickness δ = O(1/α)
near the tube walls. (We note that, for small-amplitude high-frequency oscillations, it
is possible to provide rigorous bounds on the terms that are neglected in the following
estimates. However, in the interest of brevity we shall present only the estimates for
the leading-order terms and represent the remaining smaller terms by ‘. . . ’.)

5.2.1. Net influx of kinetic energy

The time-averaged net influx of kinetic energy, F[kin]
net , is given by F[kin]

in − F[kin]
out .

Inserting (5.6) into the definition of F[kin]
in/out (t) in (2.14) and taking the time-average

yields

F[kin]
net = α2

[ ∫
1

St3

(
1
2
W

3)
dA +

∫
ε2

St

(
1
2
W ŵ2

0

)
dA + · · ·

]∣∣∣∣z=0

z=Ltotal

. (5.7)

When adding the contributions from the in- and outflow cross-sections, the flux of
kinetic energy associated with the mean flow, represented by the first integral in this
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expression, cancels; the second term vanishes at the outflow where ŵ0 = 0. Therefore
we obtain the estimate

F[kin]
net = O

(
ε2 α2

St

)
+ · · · . (5.8)

5.2.2. Work done on the fluid at the outflow

Since Poiseuille flow, St−1W (r)ez is imposed at the outflow, the instantaneous rate
of work on the fluid at the outflow is given by

Pout(t) = −
∫

1

St
W p|z=Ltotal

dA. (5.9)

Substituting (5.6) and taking the time-average then yields

Pout = P[Pois]
out + O

(
ε2α2

St

)
+ · · · , (5.10)

where

P[Pois]
out =

∫
8

St2
W Ltotal dA (5.11)

is the rate of work required to drive the steady mean flow through the undeformed,
axisymmetric tube, and the O(ε2α2/St) contribution arises from the work done by
the Reynolds-stress-induced pressure at the outflow.

5.2.3. Viscous dissipation

Finally, we estimate the time-averaged viscous dissipation. The expression for
dissipation involves integration over a time-varying volume. We exploit the assumption
ε � 1 to approximate the integral over the time-dependent volume with an integral
over the volume of the mean configuration of the tube. The time-mean dissipation

is given by Φ = 2 E : E = 2 E : E + 2 Ê : Ê. From (5.6), we find that the dominant
contribution to E comes from the Poiseuille flow, and it is straightforward to show
that the resulting contribution to the dissipation is P[Pois]

out . The dominant contribution

to Ê arises from the velocity gradients in the Stokes-layer within which the velocity

varies by O(ε) over the Stokes-layer thickness δ = O(1/α). Hence, Ê = O(αε) and the

integral of Ê : Ê over the Stokes layer gives a contribution of O(ε2α) so that

D = P[Pois]
out + O(ε2α) + · · · . (5.12)

5.2.4. Rate of work done by the wall on the fluid

Upon inserting the estimates (5.8), (5.10) and (5.12) into (5.5), P[Pois]
out in (5.10)

cancels with the viscous dissipation associated with the mean flow in (5.12). Hence,
an order-of-magnitude estimate for the time-average work done by the wall on the
fluid is given by

Pwall ≈ O(ε2α) − O

(
ε2 α2

St

)
, (5.13)
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Figure 13. Evolution of the total work done by the wall on the fluid, Wwall(t), for a mean
deflection of εE = 0.3 and various different amplitudes of the oscillation. St−1 = 1, α2 = 25.

which shows that the sign of the work done by the wall on the fluid changes when
α ∼ α2/St , i.e.

St−1
crit ∼ 1

α
, (5.14)

which is consistent with the numerical results shown in figure 12.

5.3. The dependence of the energy budget on the mean and oscillatory
amplitudes of the wall motion

Within the framework of the instability mechanism considered here, the dominant
source of energy is the influx of kinetic energy over the inflow boundary. We discussed
in § 1 that the influx of kinetic energy may be increased by increasing the amplitude
of the sloshing flows and/or by increasing the mean flow. The estimate (5.13) shows
that an increase in mean flow (via an increase in St−1) will always reduce the work
done by the wall on the fluid. The magnitude of the sloshing flows may be increased
by increasing the amplitude of the wall oscillation. However, this also affects the
viscous dissipation in the Stokes layers, and the estimate (5.13) shows that the viscous
dissipation and the net influx of kinetic energy have the same dependence on the
amplitude of the oscillations. Therefore an increase in ε will not change the sign
of the net work done by the wall on the fluid. This is confirmed by our numerical
simulations. As an example, figure 13 shows the total work done by the wall on the
fluid, Wwall(t), for a wall that performs oscillations of various amplitudes ε, about
a mean displacement of amplitude εE = 0.3. The increase in ε strongly increases the
magnitude of the sloshing flows, but the wall continues to do net work on the fluid
for all values of ε.

The scaling argument presented in the previous section assumes that wall
displacements of amplitude ε generate O(ε) axial sloshing flows. We stressed in
§ 1 that in three-dimensions, this is true only if the tube wall performs oscillations
about a non-axisymmetrically buckled mean configuration and consequently set E �= 0
in all the computations presented so far. Figure 14 demonstrates that the behaviour
of flows in collapsible tubes that perform oscillations about an axisymmetric mean
configuration does indeed differ significantly from the behaviour reported earlier.
While an increase in the mean flow still reduces the average work done by the wall on
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Figure 14. Work done by the wall on the fluid over one period of the oscillation, Pwall, for
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mean configuration.
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Figure 15. Work done by the wall on the fluid over one period of the oscillation, Pwall, for
wall oscillations with different mode shapes. Dashed line, zero axial displacements (� = 0).
Solid line, non-zero axial displacements (� = 0.1). α2 = 50, ε = 0.1 and E = 1.

the fluid, the decay is much more gradual and, within the range of inverse Strouhal
numbers considered, the wall never extracts energy from the flow, indicating that
Jensen & Heil’s instability mechanism is too weak to allow the onset of self-excited
oscillations. This is consistent with Bertram’s experimental observations (personal
communication, 2007).

5.4. Variations in the (prescribed) wall displacement field

The analysis presented in this paper requires the specification of the wall displacement
field. To demonstrate that the details of the wall deformation do not strongly affect
the results, figure 15 shows a plot of the work done by the wall over one period of the
oscillation, Pwall, as a function of the inverse Strouhal number for two different mode
shapes. The solid line represents the data obtained in our previous computations in
which the axial wall displacement was suppressed by setting W(ξ 1) = 0; the dashed
line was obtained from a second series of computations in which the wall motion
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included a significant axial component which induced a strong warping of the cross-
sections. This was achieved by setting

W(ξ 1) =

⎧⎪⎪⎨⎪⎪⎩
0 for ξ 1 < Lup,

� sin

(
2π(ξ 1 − Lup)

L

)
for Lup < ξ 1 < Lup + L,

0 for ξ 1 > L + Lup.

(5.15)

Even though the large axial wall velocities created by this wall displacement field
strongly affect the flow inside the Stokes layers, the system’s qualitative behaviour
remains unchanged. In particular, an increase in the mean flow still leads to a
proportional reduction in the work done by the wall on the fluid, and there exists a
critical value of St−1 above which the wall begins to extract energy from the flow.

6. Discussion
We have studied finite-Reynolds-number flows in three-dimensional collapsible

tubes whose walls perform (prescribed) high-frequency oscillations of finite amplitude.
The analysis of the system’s energy budget allowed us to identify conditions under
which the wall extracts energy from the mean flow. In the parameter regime considered
here, the main source of energy was shown to be the influx of kinetic energy generated
by the axial sloshing flows that are driven by the oscillatory wall motion; the wall
extracts energy from the flow if the net influx of kinetic energy exceeds the viscous
dissipation in the flow.

In a fully coupled fluid–structure interaction problem in which the wall motion is
not prescribed, any energy extracted from the flow will be transferred to the wall’s
strain and kinetic energies, and therefore lead to an increase in the amplitude of the
wall motion. Wall motions for which there is no net transfer of energy between the
fluid and the wall therefore correspond to sustained self-excited oscillations whereas
the wall oscillation would be expected to decay if the fluid continuously extracts
energy from the wall.

Since wall oscillations about an axisymmetric mean configuration create only
very weak sloshing flows and therefore generate only a small net influx of kinetic
energy, our analysis predicts that self-excited oscillations will develop much more
readily from a non-axisymmetrically buckled rather than an axisymmetric mean
configuration, which is in pleasing agreement with the experimental observations of
Bertram (personal communication, 2007).

The analysis presented in this paper was performed with a prescribed wall motion
whereas in a fully coupled fluid–structure interaction problem the mode shape and
the period of the wall oscillation would have to be determined from the coupled
solution of the fluid and solid equations. We have already demonstrated in § 5.4 that
our results are not particularly sensitive to variations in the mode shape. So far we
have not made any assumptions about the mechanism that controls the period T of
the fully coupled oscillations. If we assume that the oscillations are governed by a
dynamic balance between unsteady fluid inertia (with pressures of size O(ρf (a/T)2)
and the wall stiffness (characterized, e.g. by the tube’s bending stiffness, K) and thus
require that

ρf

( a

T

)2

∼ K, (6.1)
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we obtain an estimate for the period of the oscillation as

T ∼ a

√
ρf

K
. (6.2)

We note that this estimate was found to be very accurate in Heil & Waters’s
(2006) study of the oscillation of fluid-filled elastic rings. The frequency of the
oscillations is therefore determined by the system’s material properties, and high-
frequency oscillations may be realized by making the tube wall sufficiently stiff.
Furthermore, using T = a

√
ρf /K to non-dimensionalize time shows that

α2 =
a

µ

√
Kρf , (6.3)

indicating that the Womersley number of the flow (and, by virtue of (5.4), the critical
Reynolds number beyond which self-excited oscillations are likely to develop) depends
only on the system’s material properties.

Our analysis showed that in a given experiment (constant fluid properties and tube
dimensions) and a fixed frequency of the oscillation (i.e. fixed Womersley number α2),
self-excited oscillations are likely to develop when the mean flow (expressed in terms
of the inverse Strouhal number, St−1) exceeds a certain threshold, St−1

crit. We note that
since Re = α2/St , an increase in St−1 at fixed α2 corresponds to an increase in the
Reynolds number associated with the mean flow. The observation that self-excited
oscillations are likely to develop when St−1 > St−1

crit is therefore consistent with the
experimental observation that collapsible tube oscillations develop only at sufficiently
large Reynolds number. While this is consistent with the behaviour observed in most
fluid mechanical instabilities, we wish to stress that the mechanism for the onset of
self-excited oscillations presented in this study does not rely on a fluid-mechanical
instability, but involves a genuine interaction between fluid and solid mechanics:
small-amplitude wall oscillations generate axial sloshing flows; the sloshing flows
generate a net influx of kinetic energy into the system; the excess energy is extracted
by the wall and leads to an increase in the amplitude of the oscillation.

Finally, we assess how our predictions for the minimum velocity required for the
onset of self-excited oscillations compares to the predictions from the one-dimensional
models discussed in § 1. Assuming that the tube law, P(A∗), scales with the tube’s
bending stiffness, K , the assumption that self-excited oscillations develop when the
fluid velocity reaches the wave speed c, given by (1.1), yields

Ucrit ∼
√

K

ρf

, (6.4)

whereas our estimate (5.3), together with (6.3) yields

Ucrit ∼

√√√√ν

a

√
K

ρf

, (6.5)

indicating that the two mechanisms operate in different parameter regimes.

The authors wish to acknowledge many helpful discussions with Chris Bertram,
Andrew Hazel, Oliver Jensen and Robert Whittaker. The numerical simulations
benefited greatly from Jonathan Boyle’s work on the development of Navier–Stokes
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the normalizing factor S(t, ξ 1; ε) which suppresses the net azimuthal extension of the tube
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preconditioners in oomph-lib. The research was supported by a grant from EPSRC
and an EPSRC Advanced Research Fellowship for S. L.W.

Appendix A. The modification of the wall displacement field for
large-amplitude deformations

For small-amplitude oscillations, the eigenmodes of freely oscillating elastic rings,
modulated by the axial mode shape specified in (4.1), generate plausible wall
deformations. However, as the amplitude of the oscillation increases, this simple
wall displacement field introduces significant azimuthal stretching of the tube wall, as
illustrated in figure 16. This creates unrealistic deformations since thin-walled elastic
tubes tend to deform such that their extensional deformation is minimized.

To correct this, we defined the scaling factor S(t, ξ 1; ε) in (2.4) as

S(t, ξ 1; ε) = 2π

(∫ 2π

0

∣∣∣∣∣∂ R̃⊥
w(ξ 1, ξ 2, t; ε)

∂ξ 2

∣∣∣∣∣ dξ 2

)−1

. (A 1)

The modification ensures that the tube wall deforms without any net azimuthal
extension. In the computations with the specific wall shape described in § 4 we
employed the approximation S(t, ξ 1; ε) = 1 − 0.555d2 − 0.177d4 + 0.053d6 where
d = U(ξ 1)f (t) is the instantaneous amplitude of the radial wall displacement in the
cross-section z = ξ 1. This results in much more realistic deformations, as illustrated in
figure 16(b). In particular, without the normalization, the material points that initially
buckled outwards continue to move outwards as the amplitude of the deflection
increases. With the normalization, these points move back towards the centre when
the cross-section approaches an ‘∞’-shape, as observed in actual collapsible tubes. We
note that for E = 0 we have S(t, ξ 1; ε) = 1 + O(ε2), therefore the modification to the
wall displacement field does not change its behaviour for small deflections. Specifically,
we retain the important property that for oscillations about the axisymmetric state
the change in tube volume is a second-order effect in terms of the displacement
amplitude, ε.
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Figure 17. Convergence test showing the time history of the total work done by the wall,
Wwall(t), computed with our standard resolution involving approximately 52 600 DOFs and
160 time steps per period, and the same data computed on a finer mesh with approximately
101 700 DOFs and with 320 time steps per period. St−1 = 3, α2 = 75, ε =0.1 and E = 1.

Appendix B. Convergence tests
In addition to the detailed comparison between the asymptotic and numerical

results for small-amplitude oscillations, presented in § 4.1, we performed a number
of additional tests to assess the accuracy of our computations. Figure 17 shows
the results of a convergence test, performed to document the mesh and time-step
independence of the numerical results for finite-amplitude oscillations with ε = 0.1
and E =1. The plot compares the evolution of the total work done by the wall on
the fluid – the key quantity used in the analysis of the system’s energy budget –
computed with our standard resolution (approximately 52 600 degrees of freedom
(DOFs) and 160 time steps per period), against the results obtained on a finer
mesh with approximately 101 700 DOFs and with 320 time steps per period. Both
computations were performed for the parameters St−1 = 3 and α2 = 75, resulting in the
largest Reynolds and Womersley numbers used in any of the simulations presented
in this paper.

Further consistency checks for the numerical results are contained in the plot of
the energy budget in figure 9 where the rate-of-change of kinetic energy, dΠkin/dt ,
is plotted twice. Curve I was obtained by finite-differencing the instantaneous kinetic
energy Πkin which can be obtained directly from the computed velocity field; curve II
was obtained by computing dΠkin/dt indirectly, by adding up the remaining quantities
in the energy equation (2.14). Curves I and II are indistinguishable.
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